6.Teoria efektu brzegowego

Powłoka walcowa jest najprostszą strukturą osiowosymetryczną, powszechnie stosowaną w różnego rodzaju urządzeniach. Zasadne jest zatem wyprowadzenie równań teorii zgięciowej opisujących ten przypadek. Teoria ta, zwana efektem brzegowym, uzupełnia przedstawioną poprzednio teorię błonową, nieskuteczną w miejscach nagłej zmiany geometrii południka bądź grubości płaszcza albo w okolicy równoleżnika na którym wprowadzono jakikolwiek wydatek liniowy obciążenia. Dopiero takie podejście zapewnia ciągłość deformacji. Ten fizyczny postulat wymaga jednak analizy przemieszczeń i odkształceń, bowiem z matematycznego punktu widzenia liczba niewiadomych sił wewnętrznych jest większa od liczby równań równowagi. W teorii błonowej dwie składowe naprężenia i dwa równania równowagi wystarczały do opisu powłoki. Przedstawiony rysunek I wycinka powłoki z naniesionymi wszystkimi siłami wewnętrznymi posłuży do wyprowadzenia równań równowagi.

Rys. I. Statyka wycinka powłoki walcowej z uwzględnieniem stanu zgięciowego.

Siły wewnętrzne pokazane na rys. I to :

- wydatek siły południkowej n, który doznaje przyrostu dn na długości dx, wydatek siły równoleżnikowej (obwodowej) t, stały na równoleżniku,
- wydatek momentu południkowego m₁, który doznaje przyrostu dm₁ na długości dx,
- wydatek momentu równoleżnikowego m₂, stały na równoleżniku,
- wydatek siły poprzecznej q, który doznaje przyrostu dq na długości dx.

M. Tracz, M. Sienkiewicz

Wraz z powierzchniowymi obciążeniami zewnętrznymi wchodzą one do trzech równań równowagi: sił na kierunek osi walca x, sił na kierunek normalny do powłoki oraz momentów względem stycznej do równoleżnika. Równania te po niezbędnych przekształceniach mają postać:

$$\frac{dn}{dx} + p_s = 0 \tag{1}$$

$$\frac{dq}{dx} - \frac{t}{R} + p_n = 0 \tag{2}$$

$$\frac{dm_1}{dx} + q = 0 \tag{3}$$

W powyższych trzech równaniach występują cztery spośród pięciu niewiadomych wydatków sił wewnętrznych. Piąta m_2 jest związana z m_1 . Dalsze postępowanie polegać będzie na uzależnieniu ich od jednej funkcji przemieszczenia promieniowego w(x) za pomocą definicji wydatków, prawa Hooke'a oraz związków kinematycznych.

M. Tracz, M. Sienkiewicz

Do wprowadzenia związków kinematycznych pomocny będzie rysunek 2.

Rys. 2. Deformacja powłoki z uwzględnieniem stanu zgięciowego.

M.Tracz, M.Sienkiewicz

Punkt A leżący na powierzchni środkowej powłoki przemieści się w położenie A'. Przemieszczenie to ma dwie składowe – promieniową w i południkową u_0 . Zgodnie z hipotezą Kirchhoffa proste normalne do nieodkształconej powierzchni środkowej pozostają proste i normalne do powierzchni odkształconej. Pomija się tu wszelkie oddziaływania w kierunku promieniowym na grubości *h* płaszcza. Przy tych założeniach składowa południkowa przemieszczenia punktu B leżącego poza powierzchnią środkową wyraża się wzorem (4).

$$u(z) = u_{B} = u_{0} - \vartheta \cdot z$$
(4)

Składowa promieniowa w punktu B jest taka sama jak dla punktu powierzchni środkowej. Symbol θ we wzorze (4) oznacza nachylenie powierzchni w kierunku południka:

$$\vartheta = \frac{dw}{dx} \tag{5}$$

Przy założeniu małych ugięć wielkość ϑ uważa się za kąt nachylenia czyli obrót normalnej do powierzchni środkowej.

M. Tracz, M. Sienkiewicz

Związki kinematyczne dla odkształceń w układzie walcowym z osiową symetrią wyrażają się w ogólnym zapisie następująco:

$$\varepsilon_1 = \frac{du}{dx}$$
, $\varepsilon_2 = \frac{w}{R}$ (6)

Wstawiając wzory (4) i (5) otrzymuje się dla nich bardziej szczegółową postać:

$$\varepsilon_1 = \varepsilon_0 - \frac{d^2 w}{dx^2} \cdot z$$
, gdzie $\varepsilon_0 = \frac{du_0}{dx}$ oraz $\varepsilon_2 = \frac{w}{R}$ (7)

M. Tracz, M. Sienkiewicz

Podstawiając wzory (7) do prawa Hooke'a dla płaskiego stanu naprężenia w postaci ogólnej:

$$\sigma_{1} = \frac{E}{1-\nu^{2}} \cdot (\epsilon_{1} + \nu \epsilon_{2}), \qquad \sigma_{2} = \frac{E}{1-\nu^{2}} \cdot (\epsilon_{2} + \nu \epsilon_{1})$$
(8)

dostaje się poniższe wyrażenia:

$$\sigma_{1} = \frac{E}{1-\nu^{2}} \cdot \left(\epsilon_{0} - \frac{d^{2}w}{dx^{2}} \cdot \mathbf{z} + \nu \frac{w}{R} \right), \quad \sigma_{2} = \frac{E}{1-\nu^{2}} \cdot \left(\frac{w}{R} + \nu \epsilon_{0} - \nu \frac{d^{2}w}{dx^{2}} \cdot \mathbf{z} \right)$$
(9)

M.Tracz, M.Sienkiewicz

Kolejny krok to podstawienie składowych naprężeń do wzorów definiujących wydatki sił i momentów wewnętrznych. Postać ogólna tych wzorów jest następująca:

n =
$$\int_{-h/2}^{h/2} \sigma_1 dz$$
, t = $\int_{-h/2}^{h/2} \sigma_2 dz$, m₁ = $-\int_{-h/2}^{h/2} \sigma_1 z dz$, m₂ = $-\int_{-h/2}^{h/2} \sigma_2 z dz$ (10)

Podstawiając (9) do (10) i wykonując całkowania otrzymuje się:

$$n = \frac{Eh}{1 - \nu^2} \left(\varepsilon_0 + \nu_R^W \right) \tag{IIa}$$

$$t = \frac{Eh}{1 - \nu^2} \left(\frac{w}{R} + \nu \varepsilon_0 \right)$$
(11b)

$$m_{1} = \frac{Eh^{3}}{12(1-\nu^{2})} \frac{d^{2}w}{dx^{2}}$$
(11c)

$$m_2 = v \frac{Eh^3}{12(1-v^2)} \frac{d^2w}{dx^2}$$
(IId)

Politechnika Warszawska, Wydział MEiL Zakład Wytrzymałości Materiałów i Konstrukcji

M. Tracz, M. Sienkiewicz

9

Wygodnie jest wyeliminować ε_0 z wyrażeń (11a) i (11b) .Wtedy pozostaje jeden związek między wydatkami siły południkowej *n* i równoleżnikowej *t* :

$$t = \frac{Eh}{R}w + \nu n \tag{12}$$

Z kolei wyrażenia (IIc) i (IId) można zapisać w skrócie jako:

$$m_1 = D \cdot \frac{d^2 w}{dx^2}$$
, $m_2 = v D \cdot \frac{d^2 w}{dx^2}$ (13)

gdzie D = $\frac{Eh^3}{12(1-v^2)}$

nazywa się sztywnością powłoki na zginanie.

M. Tracz, M. Sienkiewicz

Teraz korzystając z (3) i (13) można zapisać wzór:

$$q = -\frac{dm_1}{dx} = -\mathbf{D} \cdot \frac{d^3 w}{dx^3} \tag{14}$$

Wstawiając na koniec (12) i (14) do równania równowagi (2) otrzymuje się po przekształceniach jego ostateczną postać jako równanie różniczkowe zwyczajne 4 rzędu z niewiadomą funkcją ugięcia w :

$$\frac{d^4w}{dx^4} + 4k^4w = \frac{p_n}{D} - \frac{v}{RD} \cdot \mathbf{n}$$
(15)

W równaniu (15) współczynnik

$$k = \sqrt[4]{\frac{3(1-\nu^2)}{h^2 R^2}}$$
(16)

a wydatek siły

$$n = \int p_s \, dx + C \tag{17}$$

gdzie stałą C liczy się z warunków brzegowych (sposobu podparcia powłoki walcowej).

M. Tracz, M. Sienkiewicz

Rozwiązując równanie (15) znajduje się funkcję ugięcia w(x), która podstawiona do wzorów (12), (13) i (14) daje wyrażenia dla wydatków t, m_1 , m_2 oraz q. Wydatek n znany jest wcześniej (17). Ostatni krok zadania polega na wyznaczeniu dwóch składowych naprężeń σ_1 i σ_2 . Z ogólnej teorii wiadomo, że naprężenia w powłoce mają liniowy rozkład wzdłuż grubości płaszcza, jak pokazuje to rys. 3.

Rys. 3. Rozkład naprężeń wzdłuż grubości powłoki (pokazano rozdzielenie na część błonową i zgięciową).

Uwaga. Na rys. 3 pokazano dowolny płaski stan naprężenia. W omawianym przypadku $\sigma_x = \sigma_1, \sigma_y = \sigma_2$ a $\tau_{xy} = 0$.

M. Tracz, M. Sienkiewicz

Teraz jednak zamiast posługiwać się wzorami (9), co wymagałoby szeregu przekształceń, wygodniej jest skorzystać z zależności znanych w teorii powłok a przytoczonych poniżej:

$$\sigma_{1} = \frac{n}{h} - \frac{12m_{1}}{h^{3}}Z$$
(18)
$$\sigma_{2} = \frac{t}{h} - \frac{12m_{2}}{h^{3}}Z$$
(19)

Ekstremalne wartości naprężeń występują na powierzchniach zewnętrznych dla $z = \pm h/2$ i tam poszukuje się miejsc występowania maksymalnych naprężeń zredukowanych.

W teorii liniowych równań różniczkowych zwyczajnych znana jest postać rozwiązania równania (15).

$$w(x) = C_1 e^{-kx} sinkx + C_2 e^{-kx} coskx + C_3 e^{-k(l-x)} sink(l-x) + C_4 e^{-k(l-x)} cosk(l-x) + w_{sz}(x)$$
(20)

M. Tracz, M. Sienkiewicz

Pierwsze cztery wyrazy stanowią rozwiązanie ogólne równania uproszczonego w_0 , a ostatni wyraz czyli rozwiązanie szczególne równania pełnego zależy od prawej strony równania. W praktyce rozwiązanie szczególne zapisuje się w postaci matematycznej takiej jak prawa strona i podstawiając do równania wyznacza w_{sz} . Z kolei cztery stałe całkowania C_i należące do części ogólnej wyznacza się z warunków brzegowych nakładanych na funkcję w lub jej pochodne do trzeciego rzędu włącznie. Parametr liniowy I może być obrany dowolnie, najczęściej jest to długość powłoki walcowej. Łatwo zauważyć, że rozwiązanie ogólne przedstawia efekt zginania płaszcza powłoki. Funkcje trygonometryczne i wykładnicze określają charakter zmienności ugięcia wokół miejsca zaburzenia stanu błonowego z wyraźnym efektem wygaszania. Dalsza analiza rozwiązania dowodzi, że dwa pierwsze wyrazy opisują zaburzenie w okolicy brzegu x = 0, a dwa kolejne w okolicy brzegu x = l. Dla niezbyt krótkiej powłoki efekty zaburzenia na przeciwległych brzegach nie interferują ze sobą. Łatwo tego dowieść obliczając odległość x_0 od brzegu, gdzie amplituda w_0 maleje na przykład stukrotnie. Dla uproszczenia można założyć, że jedyna niezerowa stała to C_2 . Wtedy $w_0(x_0) = 0.01 \cdot w_0(0)$, co jest równoznaczne warunkowi $e^{-kx^0} = 0.01$. Przyjmując v = 0.3 otrzymuje się wartość $x_0 = -(\ln 0.01)/k = 3.5\sqrt{Rh}$. Dla powłok cienkich wymiar ten jest co najmniej o rząd wielkości mniejszy od promienia, zatem dowiedziono, że w takim przypadku stałe C_1 i C_2 określa się z warunków na brzegu x = 0, a stałe C_3 i C_4 z warunków na brzegu x = 1.

M. Tracz, M. Sienkiewicz

Gasnący charakter zaburzenia efektem brzegowym dla przypadku C_1 i C_3 równych zero na obydwu końcach długiej powłoki pokazano na rysunku 4.

Rys. 4. Typowy przebieg funkcji będącej częścią ogólną rozwiązania.

M. Tracz, M. Sienkiewicz

W przypadku równania różniczkowego rzędu czwartego warunki brzegowe nakłada się na:

ugięcie
$$(w)_{x=0} = f_0$$
 (21a)

kąt ugięcia
$$\left(\frac{dw}{dx}\right)_{x=0} = \vartheta_0$$
 (21b)

wydatek momentu
południkowego
$$D(\frac{d^2w}{dx^2})_{x=0} = m_0$$
(21c)wydatek siły tnącej $-D(\frac{d^3w}{dx^3})_{x=0} = q_0$ (21d)

Podsumowując, na każdym brzegu uwzględnia się po dwa warunki brzegowe w celu wyznaczenia niezależnie od siebie dwóch par stałych: $C_1 \ge C_2$ oraz $C_3 \ge C_4$. Różne kombinacje tych warunków pokazano na rysunku 5.

M.Tracz, M.Sienkiewicz

a)
$$D(\frac{d^2w}{dx^2})_{x=0} = m_0$$
 $(\frac{d^3w}{dx^3})_{x=0} = 0$ b) $(w)_{x=0} = 0$ $D(\frac{d^2w}{dx^2})_{x=0} = -m_0$

Rys. 5. Warunki odpowiadające różnym przypadkom podparcia i obciążenia brzegu.

M. Tracz, M. Sienkiewicz

Przykład. Zamknięty nieodkształcalnymi dnami długi zbiornik poddany jest ciśnieniu *p*. Wyznaczyć przebieg naprężeń σ_1 i σ_2 w zbiorniku.

Rys. ZI. Zbiornik ze sztywnymi dnami.

M. Tracz, M. Sienkiewicz

Na początku oblicza się funkcję wydatku siły południkowej n (wzór 17). W przykładzie $p_s = 0$, zatem wydatek n = C. Stałą C znajduje się z równania równowagi sił na kierunek x dla zbiornika odciętego myślowo od lewego dna.

$$n \cdot 2\pi R - p_n \cdot \pi R^2 = 0$$
 skąd $n = \frac{p_n R}{2}$

Ze względu na symetrię wystarczy rozpatrzyć lewy koniec powłoki x = 0. Jeśli dodatkowo długość *l* jest dostatecznie długa, rozwiązanie pełne równania (15) redukuje się do trzech wyrazów:

 $w(x) = C_1 e^{-kx} sinkx + C_2 e^{-kx} coskx + w_{sz}(x)$

Prawa strona równania różniczkowego po podstawieniu *n* przyjmuje postać:

$$\frac{p_n}{D} - \frac{\nu}{RD} \cdot \mathbf{n} = \frac{p_n(2-\nu)}{2D}$$

M. Tracz, M. Sienkiewicz

Ponieważ prawa strona równania jest stała, część szczególna rozwiązania również jest stała. Podane wzorem (4) wyrażenie spełnia równanie pełne, zatem jest rozwiązaniem szczególnym.

$$W_{SZ} = \frac{p_n(2-\nu)}{8k^4D} = \frac{p_n R^2(2-\nu)}{2Eh}$$

Warunki brzegowe na lewym końcu x = 0:

$$(w)_{x=0} = 0$$
 oraz $\left(\frac{dw}{dx}\right)_{x=0} = 0$

Po podstawieniu odpowiednich wyrażeń i przekształceniach stałe całkowania:

$$C_1 = C_2 = -\frac{p_n(2-\nu)}{8k^4D}$$

M. Tracz, M. Sienkiewicz

Pełne rozwiązanie ma ostateczną postać:

$$w(x) = -\frac{p_n(2-\nu)}{8k^4D} e^{-kx} sinkx - \frac{p_n(2-\nu)}{8k^4D} e^{-kx} coskx + \frac{p_n(2-\nu)}{8k^4D}$$

Podstawienie funkcji ugięcia do wyrażeń na wszystkie wydatki sił i momentów daje następujące rezultaty:

$$t = -\frac{p_n R(2-\nu)}{2} \cdot e^{-kx} (\operatorname{sinkx} + \operatorname{coskx}) + p_n R$$
$$m_1 = \frac{p_n (2-\nu)}{4k^2} \cdot e^{-kx} (-\operatorname{sinkx} + \operatorname{coskx})$$
$$m_2 = \nu \cdot \frac{p_n (2-\nu)}{4k^2} \cdot e^{-kx} (-\operatorname{sinkx} + \operatorname{coskx})$$
$$q = \frac{p_n (2-\nu)}{2k} \cdot e^{-kx} \cdot \operatorname{coskx}$$

M. Tracz, M. Sienkiewicz

$$n(0) = n = \frac{p_n R}{2}$$

$$t(0) = \frac{\nu p_n R}{2}$$

$$m_1(0) = \frac{p_n (2-\nu)}{4k^2} = \frac{p_n Rh(2-\nu)}{4\sqrt{3(1-\nu^2)}}$$

$$m_2(0) = \nu \frac{p_n (2-\nu)}{4k^2} = \nu \frac{p_n Rh(2-\nu)}{4\sqrt{3(1-\nu^2)}}$$

M.Tracz, M.Sienkiewicz Zakład Wytrzymałości Materiałów i Konstrukcji

Ostatni punkt obliczeń dotyczy naprężeń na powierzchniach górnej i dolnej płaszcza. Wyniki przedstawiono na rysunku Z2. Obliczenia wykonano z użyciem wzorów (18) i (19) z części teoretycznej.

Najbardziej niebezpiecznym miejscem jest wewnętrzna powierzchnia powłoki, gdzie:

$$\sigma_{\rm red} = \sqrt{{\sigma_1}^2 - {\sigma_1}{\sigma_2} + {\sigma_2}^2} = 1.82 \frac{p_n R}{h}$$

W porównaniu z teorią błonową wynik ten jest 1.82 razy większy.

Rys. Z2. Rozkłady naprężeń σ_1 i σ_2 wzdłuż grubości powłoki.

M. Tracz, M. Sienkiewicz

Dla lepszego zilustrowania lokalności efektu brzegowego zamieszczono wykresy ugięcia (rys. Z3) i wydatku momentu południkowego (rys. Z4) w okolicy brzegu powłoki.

M. Tracz, M. Sienkiewicz

Dla kompletności dodano poniżej wartość wydatku *q*. Wynikające z niego naprężenia styczne poprzeczne do powierzchni środkowej są małe i wobec tego pomijane.

$$q(0) = \frac{p_n \sqrt{Rh}(2-\nu)}{2\sqrt{3(1-\nu^2)}}$$

Widać, że q jest większe od zera co zgadza się z obrazem fizycznym.

Rozwiązanie analityczne dla zbiornika z rys. ZI podano w postaci wzorów ogólnych. Dla porównania z wynikami z obliczeń metodą elementów skończonych, do niektórych z powyższych wzorów wstawiono następujące dane liczbowe:

ciśnienie wewnętrzne $p_n = I MPa$, promień powierzchni środkowej powłoki walcowej R = I m, grubość powłoki h = I0 mm.

M. Tracz, M. Sienkiewicz

Najbardziej znaczące są wyniki dla naprężeń. Wartości liczbowe naprężeń łatwo uzyskać posiłkując się ich opisem rys. Z2. Na początku warto obliczyć wspólny czynnik:

 $\frac{p_n \cdot R}{h} = \frac{1MPa \cdot 1000mm}{10mm} = 100MPa$

Wtedy:

składowa południkowa naprężenia na powierzchni górnej: $\sigma_1(\frac{h}{2}) = -1.045 \cdot 100 \text{ MPa} = -104.5 \text{ MPa}$ składowa południkowa naprężenia na powierzchni dolnej: $\sigma_1(-\frac{h}{2}) = 2.045 \cdot 100 \text{ MPa} = 204.5 \text{ MPa}$ składowa obwodowa naprężenia na powierzchni górnej: $\sigma_2(\frac{h}{2}) = -0.313 \cdot 100 \text{ MPa} = -31.3 \text{ MPa}$ składowa obwodowa naprężenia na powierzchni dolnej: $\sigma_2(-\frac{h}{2}) = 0.613 \cdot 100 \text{ MPa} = 61.3 \text{ MPa}$

M. Tracz, M. Sienkiewicz

Jak wynika z teorii naprężenia te są superpozycją części błonowej i zgięciowej. Ponieważ w rozwiązaniu metodą elementów skończonych oprócz wyników sumarycznych na powierzchniach zewnętrznych prezentuje się również naprężenia błonowe, poniżej przytoczono ten składnik również dla metody analitycznej. Obydwie składowe błonowe rozumiane jako wartości naprężeń w środku grubości powłoki łatwo obliczyć jako średnie arytmetyczne z obydwu powierzchni zewnętrznych górnej i dolnej. Wobec tego:

$$\sigma_1^b = \frac{1}{2} \left(\sigma_1 \left(\frac{h}{2} \right) + \sigma_1 \left(-\frac{h}{2} \right) \right) = \frac{1}{2} \left(-104.5 + 204.5 \right) \text{MPa} = 50 \text{ MPa}$$

$$\sigma_2^b = \frac{1}{2} \left(\sigma_2 \left(\frac{h}{2} \right) + \sigma_2 \left(-\frac{h}{2} \right) \right) = \frac{1}{2} (-31.3 + 61.3) \text{ MPa} = 15 \text{ MPa}$$

M. Tracz, M. Sienkiewicz

Poza naprężeniami warto skonfrontować część szczególną rozwiązania równania różniczkowego w_{sz} w rozwiązaniu analitycznym, z wartością przemieszczenia promieniowego w dostatecznie dużej odległości od połączenia z nieodkształcalną dennicą w metodzie elementów skończonych. Podstawiając dane liczbowe:

$$w_{SZ} = \frac{p_n R^2 (2 - \nu)}{2Eh} = \frac{1 \frac{N}{mm^2} \cdot 10^6 mm^2 \cdot (2 - 0.3)}{2 \cdot 2 \cdot 10^5 \frac{N}{mm^2} \cdot 10mm} = 0.425 mm$$

Aby ułatwić ocenę strefy zaburzenia powyższej wartości efektem brzegowym, pozostaje jeszcze określić skalę osi odciętych na rysunkach 3 i 4.W tym celu należy obliczyć wartość współrzędnej x z warunku kx = 1, gdzie

$$k = \frac{\sqrt[4]{3(1-\nu^2)}}{\sqrt{Rh}} = \frac{\sqrt[4]{3(1-0.3^2)}}{\sqrt{1000mm \cdot 10mm}} = 1.2854 \cdot 10^{-2} \frac{1}{mm}$$

Zatem wartości kx = l odpowiada:

$$x = \frac{1}{k} = \frac{10^2 mm}{1.2854} = 77.8 mm$$
.

M. Tracz, M. Sienkiewicz

Zamknięty nieodkształcalnymi dnami długi zbiornik walcowy poddany jest ciśnieniu p_n . Połączenie krawędzi końcowych walca z dnami jest przegubowe. Wyznaczyć przebieg naprężeń σ_1 i σ_2 oraz ugięcia w wzdłuż południka zbiornika posługując się metodą analityczną. Do końcowych wzorów ogólnych podstawić następujące dane: ciśnienie wewnętrzne $p_n = 1 MPa$, promień powierzchni środkowej powłoki walcowej R = 1 m, grubość powłoki h = 10 mm, moduł Younga $E = 2 \cdot 10^5 MPa$, liczba Poissona v = 0.3.

Rys. Z5. Zbiornik walcowy połączony z dnami przegubowo.

M.Tracz, M.Sienkiewicz

- I. Efekt brzegowy:
 - A. rozszerza teorię błonową o efekt zgięciowy.
 - B. dla dostatecznie długich powłok jego wpływ jest znaczący na całej ich długości.
 - C. jest efektem lokalnym obecnym m.in. przy podparciach i nieciągłościach geometrii.
 - D. nie prowadzi do zwiększenia naprężeń w stosunku do teorii błonowej.

- 2. Które z poniższych stwierdzeń są prawdziwe?:
 - A. Sztywność płytowa nie zależy od stałych materiałowych.
 - B. Maksymalne naprężenia zredukowane występują w płaszczyźnie środkowej powłoki.
 - C. Efekty przeciwległych brzegów nie interferują ze sobą tylko w przypadku powłok krótkich.
 - D. W równaniu na ugięcie powłoki długiej stałe C_1 i C_2 odpowiadają jednemu brzegowi powłoki, natomiast stałe C_3 i C_4 przeciwległemu brzegowi.
- Wybrać prawidłową odpowiedź dla wartości sił na brzegu powłoki walcowej, wymienionych w punktach A. D. . W powłoce nie ma ciśnienia.

- A. wydatek siły obwodowej t jest równy zero.
- B. wydatek momentu południkowego **m**₁ jest różny od zera
- C. wydatek siły poprzecznej **q** jest różny od zera
- D. wydatek momentu obwodowego m2 jest równy zero

M. Tracz, M. Sienkiewicz

 Wybrać prawidłową odpowiedź dla wartości ugięcia w i nachylenia ô na brzegu powłoki walcowej.

- A. ugięcie w jest różne od zera
- B. nachylenie ϑ jest równe zero
- C. ugięcie w jest równe zero
- D. nachylenie ϑ jest różne od zera

M. Tracz, M. Sienkiewicz

Pytania sprawdzające - odpowiedzi

- I. Efekt brzegowy:
 - A. rozszerza teorię błonową o efekt zgięciowy.
 - B. dla dostatecznie długich powłok jego wpływ jest znaczący na całej ich długości.
 - C. jest efektem lokalnym obecnym m.in. przy podparciach i nieciągłościach geometrii.
 - D. nie prowadzi do zwiększenia naprężeń w stosunku do teorii błonowej.

- 2. Które z poniższych stwierdzeń są prawdziwe?:
 - A. Sztywność płytowa nie zależy od stałych materiałowych.
 - B. Maksymalne naprężenia zredukowane występują w płaszczyźnie środkowej powłoki.
 - C. Efekty przeciwległych brzegów nie interferują ze sobą tylko w przypadku powłok krótkich.
 - D. W równaniu na ugięcie powłoki długiej stałe C_1 i C_2 odpowiadają jednemu brzegowi powłoki, natomiast stałe C_3 i C_4 przeciwległemu brzegowi.

B
 B, C